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Scope

* This presentation provides a concise overview
about the MERLIN algorithm:
— Introduction
— Idea and basic features
— Description of the optimization model
— Detailed definition of variables and constraints
— Conclusion

* For more detailed information please refer to [1]



The Traveling Salesman Problem

Given:
* n cities/stations {0,...,n-1}

» Distances c,, 2 0 for each disjoint pair a,b
of stations

Task:
Find a roundtrip of minimal total length
visiting each of the n stations exactly once
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The P=NP Question

The Travelling Salesman Problem (TSP) is NP-complete

NP-complete problems are known to require an
exponential number of computational steps (e.g. 2" or n!)
on a deterministic machine.

So far there is no algorithm which is able to solve a NP-
complete problem by a polynomial number of steps (e.g.
n3 or no)

NP-complete problems are considered as the ‘hardest’
problems within the class NP: If an algorithm would be
able to solve any NP-complete problem by a polynomial
number of steps, the class NP would collapse and would
be part of the problem class P of problems solvable in
polynomial time (P=NP)



MERLIN: Basic features

MERLIN is based on linear programming

A set of suitable variables and linear constraints
defines an optimization model transforming the
TSP into a linear programming problem

Thus, the model parameters are used like real
values though TSP is an integer optimisation
problem

The model requires only a polynomial number of
variables and constraints



Description Linear Optimization

p
Min ZC:‘X:‘ ci. i€ R, x=(
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Considering a set of linear constraints:
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MERLIN Model: First definitions

Input parameters:
— nstations (0...n-1)

— cost matrix C with the distances Cj2 0
of the stations i,j (0< i,/ < n-1, ).

Graph Model (see figure next page):

— Nodes labelled as (<column>, <row>) = (/,k)
—> station jis at the kth position of the salesman roundtrip.

— Edges labelled as (<from_node>, <to_node>, <row>) = (i,},k)
- The edges are represented by optimisation variables
Xi jk (0= X <)
signalling the presence of a directed edge with start station / and end station j at
position k in the graph. E.qg. if variable x; ;,=1 then the edge from station /to

station j is at the kth position of the salesman’s roundtrip .

W.l.o.g. we take station 0 as start and end station of the roundtrip
(the salesman home office) &

Zxo_ io=1

j=1



Graph model
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Some other definitions

a route is a consecutive sequence of n edges from start-node (0,0) to
end-node (0,n), in which the n edges are represented by n variables

Xio j0,0 ==+ Xin-1_jn-1,n-1

a route is consecutive when it is using exactly one edge per position
(column) and the end-station of an edge at position k is identical with the
start station of the following edge at position k+1

a route is called symmetric if it is Hamiltonian, i.e. including all stations
0...n-1, so each station is an end node of exactly one edge
of the route

We will have a general solution for the TSP if we are able to find
always a unique symmetric and consecutive route with minimal cost
from node (0,0) to node (0,n)




Linear Optimisation: Cost function

Where at the first/last position only edges from/to station 0
are relevant, so all other edge-variables can be set to zero:
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Linear Optimisation:
Basic constraints

« Route has to be symmetric
—> each station is reached exactly once

Y'Y 5 =1 Vi (0.n—1),i% ] ()

 Route has to be consecutive
- Sum of entry variables at each node (/,k) equals to
the sum of the exit variables

n—1 n—1
DXk = DX ke VI,k (0..n—1), k (0..n—2)
i=0,i#l j=0, j#l
or
n—l1 n—1
ZXi_l,k — Z.Xl_j,k+1 =0 (2)

i=0,i%l j=0, j#l
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Example for a valid solution

* Routeis
consecutive

* Routeis
symmetric

* Variables x;
are integer
values
(Oor1)

-

v .
Station

Position in Route

Problem:
How can we enforce the 0/1 settings of the variables

in a ‘real value environment’ like LP?
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- Seems not to be not possible but we have to ensure it, otherwise ...



Examples for degenerated solutions

... bad things are happening
-> hon-integer solutions



Considerations non-integer solutions

* Non-integer solutions combine several sub-routes from
start-node (0,0) to end-node (0,n), each with a weight
below 1 but altogether with an overall weight of 1

« There are two classes of non-integer solutions:

— The bad ones:
Combinations of sub-routes where at least two of them are
‘asymmetric’ i.e. having particular stations more than once in
their sequence and leaving others instead. The particular sub-
routes have to be complementary such that a skipped station of
a sub-route is covered by the sequence of another sub-route
- we will call this asymmetric solutions in the following

— The good ones:
Combinations of sub-routes of complete and valid solutions such
that each sub-route is symmetric, i.e. including all stations 0...n-
1 once
- we will call this symmetric solutions in the following

 The first ones have to be avoided, but we can live

comfortably with the latter (see next page) "



Example symmetric solution
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The example above causes no trouble because each sub-route is a valid and
optimal solution for the particular TSP problem
—> pick one out e.g. by the following procedure:
- set of one of the non-zero variables x; ;, at the first column to 1
- run the overall algorithm again
- if still variables between 0 and 1 occur, set one of them to 1 a.s.o.

—> This procedure terminates in less than n steps

15



How to deal with the bad ones?

« Symmetric solutions are welcome so we only have to
avoid asymmetric sub-routes
-> This can be done by two steps:

1. Separate the complementary sub-routes
2. Enforce the symmetry of each sub-route

* For that, we introduce a new mechanism, the mirror:

— For each graph node (/,k) the mirror Y(/,k) provides an exact
representation of the sub-route(s) crossing this node

— A mirror Y(/,k) consists of about n° variables "%, . ,each
representing a variable Xx; ;, of the original graph

Y(,k)={y"":_ ;) V1, k,i, j,d (0..n—1)
where

I,j = start/end stations of the corresponding graph edge

d = distance of the edge from node (/,k) in numbers of columns16



Example for a mirror

Y(1,3) =y, 50=0.5, yVs 5,=0.5, y-9; 1,=0.5,

d=4 d=5 d=0 d=1 d=2
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Constraints to build up mirrors (1)

A mirror Y(/,k) has to represent all sub-routes crossing
node (/,k) = edges with d=0, i.e. starting at node (/,k),
can be assigned directly to the corresponding mirror
variables

YU e =X Vi, j,k (0O.n=1),1+#]j (3)

There have to be edges within each row of mirror Y(/,k)
with overall weight equal to the weight of node (/,k)

n—1 n—1 n—1

Z Zy(l,k)i_j,d = W(l,k) — ZXl_j‘,k (4)

i=0 j=0,i%# ] J'=0,j'#l

Vd (0..n-1), VI, k (0..n—1)
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3.

Constraints to build up mirrors (2

The sub-routes in the mirror have to be consecutive

n—1 n—1
Zy(l’k)i_h,d = Zy(l’k)h_j,dﬂ S)

i=0,i%h j=0, j#h

Vi,k,h,d (0..n—1)

4. Each graph edge has to be represented by the

combined mirrors of a particular column
n—1
Zy(l’k)i_j,d = Xi_jk+d (6)
[=0

Vi, j,k,d (0..n—1)

Annotation: Operator ‘+ applied on variable indices means the modulo sum with
basis n such that the result is always 0...n-1
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5.

Constraints to build up mirrors (3)

The sub-routes in the mirror have to be symmetric
—> all stations have to be reached

n-1 n-1

DY Y= wlbk) V) (0..n—1) (7)

d=0 i=0,i#

That’s it!
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Conclusion

MERLINN uses

- O(NP®) variables and

- O(N#) constraints

to define a Linear Formulation of the
Travelling Salesman Problem

It is a general applicable approach for the TSP
LP is known to be polynomial
TSP solvable in a polynomial number of steps as well

P=NP!
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