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Scope

• This presentation provides a concise overview 

about the MERLIN algorithm:

– Introduction

– Idea and basic features

– Description of the optimization model

– Detailed definition of variables and constraints

– Conclusion

• For more detailed information please refer to [1]
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The Traveling Salesman Problem

Given:

• n cities/stations {0,…,n-1}

• Distances cab ≥ 0 for each disjoint pair a,b
of stations 

Task:
Find a roundtrip of minimal total length 

visiting each of the n stations exactly once
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The P=NP Question

• The Travelling Salesman Problem (TSP) is NP-complete
• NP-complete problems are known to require an 

exponential number of computational steps (e.g. 2n or n!) 
on a deterministic machine. 

• So far there is no algorithm which is able to solve a NP-
complete problem by a polynomial number of steps (e.g. 
n3 or n5)

• NP-complete problems are considered as the ‘hardest’
problems within the class NP: If an algorithm would be 
able to solve any NP-complete problem by a polynomial 
number of steps, the class NP would collapse and would 
be part of the problem class P of problems solvable in 
polynomial time (P=NP)
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MERLIN: Basic features

• MERLIN is based on linear programming

• A set of suitable variables and linear constraints 
defines an optimization model transforming the 
TSP into a linear programming problem

• Thus, the model parameters are used like real 
values though TSP is an integer optimisation 
problem 

• The model requires only a polynomial number of 
variables and constraints
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Description Linear Optimization

Min

Considering a set of linear constraints:

a11x1 + a12x2 + ... + a1pxp ≥ (≤, =) b1

…….

am1x1 + am2x2 + ... + ampxp ≥ (≤, =) bm

with
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MERLIN Model: First definitions

• Input parameters: 

– n stations (0…n-1) 

– cost matrix C with the distances cij ≥ 0 

of the stations i,j (0≤ i,j ≤ n-1, i≠j). 

• Graph Model (see figure next page):

– Nodes labelled as (<column>, <row>) = (i,k)

� station i is at the kth position of the salesman roundtrip. 

– Edges labelled as (<from_node>, <to_node>, <row>) = (i,j,k)

� The edges are represented by optimisation variables

xi_j,k ( 0≤ xi_j,k ≤ 1) 
signalling the presence of a directed edge with start station i and end station j at 

position k in the graph. E.g. if variable xi_j,k=1 then the edge from station i to

station j is at the kth position of the salesman’s roundtrip . 

• W.l.o.g. we take station 0 as start and end station of the roundtrip 

(the salesman home office)
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Graph model
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Some other definitions

• a route is a consecutive sequence of n edges from start-node (0,0) to 
end-node (0,n), in which the n edges are represented by n variables

xi0_j0,0 ... xin-1_jn-1,n-1

• a route is consecutive when it is using exactly one edge per position 
(column) and the end-station of an edge at position k is identical with the 
start station of the following edge at position k+1

• a route is called symmetric if it is Hamiltonian, i.e. including all stations 
0…n-1, so each station is an end node of exactly one edge 
of the route

We will have a general solution for the TSP if we are able to find
always a unique symmetric and consecutive route with minimal cost

from node (0,0) to node (0,n)
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Linear Optimisation: Cost function

Min

Where at the first/last position only edges from/to station 0 
are relevant, so all other edge-variables can be set to zero:  
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Linear Optimisation: 

Basic constraints

• Route has to be symmetric
� each station is reached exactly once

• Route has to be consecutive
� Sum of entry variables at each node (l,k) equals to 
the sum of the exit variables

or 
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Example for a valid solution
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Position in Route

Station

x0_3,0=1,  x3_2,1=1, x2_4,2=1, x4_5,3=1, x5_1,4=1, x1_0,5=1

• Route is 
consecutive

• Route is 
symmetric

• Variables xi_j,k
are integer 
values
(0 or 1)

Problem: 

How can we enforce the 0/1 settings of the variables 
in a ‘real value environment’ like LP?

� Seems not to be not possible but we have to ensure it, otherwise …
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Examples for degenerated solutions

… bad things are happening 
���� non-integer solutions
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Considerations non-integer solutions

• Non-integer solutions combine several sub-routes from 
start-node (0,0) to end-node (0,n), each with a weight 
below 1 but altogether with an overall weight of 1

• There are two classes of non-integer solutions:
– The bad ones:

Combinations of sub-routes where at least two of them are 
‘asymmetric’ i.e. having particular stations more than once in 
their sequence and leaving others instead. The particular sub-
routes have to be complementary such that a skipped station of 
a sub-route is covered by the sequence of another sub-route 
� we will call this asymmetric solutions in the following

– The good ones:
Combinations of sub-routes of complete and valid solutions such 
that each sub-route is symmetric, i.e. including all stations 0…n-
1 once
� we will call this symmetric solutions in the following 

• The first ones have to be avoided, but we can live 
comfortably with the latter (see next page)
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Example symmetric solution

The example above causes no trouble because each sub-route is a valid and 

optimal solution for the particular TSP problem 

� pick one out e.g. by the following procedure:

- set of one of the non-zero variables xi_j,0 at the first column to 1

- run the overall algorithm again

- if still variables between 0 and 1 occur, set one of them to 1 a.s.o. 

� This procedure terminates in less than n steps
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How to deal with the bad ones?

• Symmetric solutions are welcome so we only have to 
avoid asymmetric sub-routes
� This can be done by two steps: 

1. Separate the complementary sub-routes
2. Enforce the symmetry of each sub-route 

• For that, we introduce a new mechanism, the mirror:
– For each graph node (l,k) the mirror Y(l,k) provides an exact 

representation of the sub-route(s) crossing this node

– A mirror Y(l,k) consists of about n3 variables y(i,k)
i_j,d each 

representing a variable xi_j,k of the original graph

where

i,j =  start/end stations of the corresponding graph edge

d = distance of the edge from node (l,k) in numbers of columns 
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Example for a mirror

Y(1,3) =  y(1,3)
1_5,0=0.5,  y(1,3)

5_3,1=0.5,  y(1,3)
3_0,2=0.5,
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Constraints to build up mirrors (1)

1. A mirror Y(l,k) has to represent all sub-routes crossing 
node (l,k) � edges with d=0, i.e. starting at node (l,k), 
can be assigned directly to the corresponding mirror 
variables

2. There have to be edges within each row of mirror Y(l,k) 
with overall weight equal to the weight of node (l,k) 
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Constraints to build up mirrors (2)

3. The sub-routes in the mirror have to be consecutive

4. Each graph edge has to be represented by the 
combined mirrors of a particular column
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basis n such that the result is always 0...n-1 
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Constraints to build up mirrors (3)

5. The sub-routes in the mirror have to be symmetric
� all stations have to be reached

That’s it!
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Conclusion

• MERLINn uses
- O(N5) variables and 
- O(N4) constraints

to define a Linear Formulation of the 
Travelling Salesman Problem

• It is a general applicable approach for the TSP

• LP is known to be polynomial

• TSP solvable in a polynomial number of steps as well

P=NP!
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